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Abstract

Described is an approach to orthogonally fused conjugated organic compounds

that may act as molecular switching devices. Four thiophene trimers are added in a

single operation to spiro-fused cores to afford the target molecules. A spiro-fused

thiophene-based monomer system is convened to a spiro-fused heptamer that is 25 A

long. The synthesis of a mixed phenylene-thiophene system is described that

provides a spiro-fused octamer that is 30 A long. In each case, alkyl substituents on

the thiophenes afford soluble materials. Trimethylsilyl end groups flank each

orthogonally fused system. Organopalladium- and organonickel-catalyzed

procedures are used extensively for the synthesis of the orthogonally fused

compounds.
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Since the time of the first room-filling computers. there has been .

tremendous drive to compress the size of computing instruments. In order to bring

this desire to its extreme, it was conceived that one may be able to construct single

molecules that could each function as a self-contained electronic device. 3 Here we

outline the convergent and flexible synthesis of two different macromolecules that

approach the size necessary for molecular switch testing. Hence, the feasibility of

molecular electronic devices, whether the architectures be of single molecule or

ensemble arrangements, may soon be experimentally addressed.

Recently, Aviram of the IBM Corporation suggested that molecules -50 A long

that contain a pro-conducting (non-doped or non-oxidized system, hence insulating)

chain that is fixed at a 90° angle via a non-conjugated sigma bonded network to a

conducting (doped or oxidized system) chain should exhibit properties that would

make them suitable for interconnection into future molecular electronic devices.

These devices may be useful for the memory, logic, and amplification computing

systems. 4 1, in doped form, is an example of a pro-conducting/o/conducting

H-H

1

molecule. To date, all experimental studies on orthogonal systems have dealt only

with the spiro core of related molecules and no synthetic approach demonstrated

incorporation of the oligomeric chains.5 ' 6

We recently described a facile approach to the core of two molecules which fit

the general class of systems necessary for this electronic model. 7 The thiophene-

based core (2) was synthesized in two steps from the tetra-alkyne (3) by treatment
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with CP2Zr(n-Bu)2 and S2C2 followed by bromodesilylation with Br2. The phenylene-

based core (4) was prepared in a four step sequence from 2-aminobiphenyl. 7 .8 in a

2 8dM. 3

3

single operation, we hoped to introduce the four branches onto the core units. In

order to keep the final products soluble, it was necessary to use 3-alkylthiophenes as

the branching units. Alkylated phenylenes have inferior conductivities due to the

severe out of plane distortions of the consecutive aryl units. 9 " 1 1

Functionalized and alkylated thiophene triners were synthesized as shown in

scheme I (yields listed for R = CH3). 12 14

Scheme I

12 1. LDA 1. n-BuUir Me3Si r - e3i

2. Me3SiCI S) 2. < 1

89% 97% 5

R R R

dHgO. 12 1.M /\ SM
94% 5 \ 2, C42Ni(d~p) S

6 3. LDA, 6 7
70%

R R

6 Z 7, Cl2N(pp) qu n 03

3. LDA n-BuASnC 8,R-C 3
65%R- nrC4

When the silylated thiopbene unit in 3 had a 3-methyl substituent, desilylation was

rapid upon silica gel chromatography (even with amine-washed silica gel).

Carbocationic character was sufficiently stabilized in the triner (not the monomer
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or dimer) by both the P-silicon and a-methyl to allow for this rapid protodesilylation.

Thus we chose to keep the terminal thiophene unit free of an alkyl substituent.

These trimers possesses several of the desired properties, namely (1) a terminal

tributylstannyl substituent for attachment to the cores (2) alkyl groups for

maintaining the solubility, and (3) a terminal trimetbylsilyl group for future

chemoselective modification of the final orthogonal oligomers to permit adhesion to

nanolithographic probes.' 5

Treatment of the core 2 with excess 9 in the presence of 8 mol % of P4(PPb 3 )4

afforded the target orthogonal thiophene system 10 in 86 % yield. 1 6 , 1 7  Similarly,

the core 4 was treated with 9 and 8 mol % of Pd(PPb 3 )4 to give thi: mixed phenylene-

hiophene spiro fused octamer 11 in 60 % yield. 18 Compounds 10 and 11 are

HCH 3C H3  CH 3

Me3Si _I /\ \ I SiMG3S S S S

10

n-HC4 n-..C4 "C 4H-n C4H*-n

n-C 4  -HC4H-n

approximately 25 A and 30 A in length (excluding the trimethylsilyl substituents),

respectively, as determined by MMX with extended x Huckel parameters. 1 9 Both 10

and 11 are soluble in many organic solvents which will allow simple processing;

however, without the alkyl substituents, these materials are intractable.

Interestingly, while most fast atom bombardment mass spectra (FAB/MS) resemble

chemical ionization spectra in providing primarily even-electron cations or anions
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(i.e. M+H), 2 0 both 10 and 11 readily showed M+ data in 3-nitrobenzyl alcohol (NBA)

and o-nitrophenyloctylether (ONPOE) matrices, respectively.)1 7 .13  This is an

indication of the ease of oxidation of these oligomers which was confirmed in cyclic

voltammetry studies on 10 that showed two reversible waves with anodic peak

potentials (Epa) at 0.68 and 1.05 V.2 1 ,2 2
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